The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats.

نویسندگان

  • Martin O'Neill
  • Verity J Brown
چکیده

This study assessed whether dopamine in the dorsomedial striatum is necessary for flexible adaptation to changes in stimulus-response contingencies. As KW-6002 (Istradefylline), an adenosine A(2A) antagonist, improves motor deficits resulting from striatal dopamine depletion, we also tested for potential ameliorative effects of KW-6002 on dopamine depletion-induced cognitive deficits. Male Lister hooded rats were presented with two bowls, discriminable by either a textured covering on the outer surface, their scent or the bowl contents (digging media) in which bait was buried. Once they had learned in which bowl food was buried, the stimulus-response contingencies were reversed. In both phases (acquisition and reversal), the criterion for learning was defined a priori as six consecutive correct trials. Following depletion of dopamine in the dorsomedial striatum, acquisition of the discriminations was intact but there was an increase in the number of trials to attain criterion performance in the reversal phases, indicating an impairment in reversal learning. KW-6002 (1mg/kg bidaily for 10 days) non-specifically increased the number of trials to criterion at all stages of the test and in both controls (sham-operated) and dopamine-depleted rats. Chronic KW-6002 treatment did not improve the reversal deficits in dopamine-depleted rats. These findings suggest that dopamine transmission in the dorsomedial striatum is critical for the flexible shifting of response patterns and the ameliorative effects of KW-6002 following depletion of dopamine in the striatum may be restricted to motor functions without relieving deficits in response-shifting flexibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia.

We have examined the ability of KW-6002, an adenosine A2a antagonist, to modulate the dyskinetic effects of L-DOPA in 6-hydroxydopamine-lesioned rats. In animals rendered dyskinetic by a previous course of L-DOPA treatment, KW-6002 did not elicit any abnormal involuntary movements on its own, but failed to reduce the severity of dyskinesia when coadministered with L-DOPA. A second experiment wa...

متن کامل

Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice.

Evidence for heteromeric receptor complexes comprising adenosine A2A and metabotropic glutamate 5 (mGlu5) receptors in striatum has raised the possibility of synergistic interactions between striatal A2A and mGlu5 receptors. We investigated the role of striatal A2A receptors in the locomotor stimulant and antiparkinsonian properties of mGlu5 antagonists using complementary pharmacologic and gen...

متن کامل

Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice.

Adenosine A2A receptor antagonists provide a promising nondopaminergic approach to the treatment of Parkinson's disease (PD). Initial clinical trials of A2A antagonists targeted PD patients who had already developed treatment complications known as L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve symptoms while reducing existing LID. The goal of this study ...

متن کامل

Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism.

Drug-induced tremulous jaw movements in rats have been used as a model of parkinsonian tremor. Because adenosine A2A antagonists have antiparkinsonian effects, the present experiments were conducted to study the ability of adenosine A2A antagonism to reverse the tremulous jaw movements produced by the antipsychotic drugs pimozide, haloperidol and reserpine. In one group of studies, rats receive...

متن کامل

Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition.

Central adenosine A(2A) receptor is a promising target for drugs to treat Parkinson's disease (PD), and the central blockade of adenosine A(1) receptor improves cognitive function. In the present study, we investigated the effect of a novel adenosine A(1) and A(2A) dual antagonist, 5-[5-amino-3-(4-fluorophenyl) pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in animal models of PD and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of learning and memory

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2007